

Bimodality & Naturalness: LLMS! LLMS!! LLMS!!

When Stochastic Parrots Write Code....

Premkumar Devanbu DECAL Laboratory Computer Science

UCDAVIS

Thanks to NSF (Twice)
IARPA
Sandia Nat'l Labs
Humboldt Foundation

Reality Check

FACT: Codex, GPT-x, etc are now widely used to generate code.

How much are people <u>using</u> this generated code? Does it help?

How good is this code?

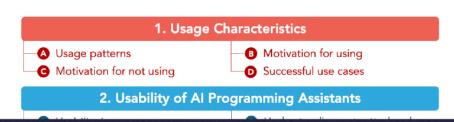
Does Codex help coders In "Vivo"?

Understanding the Usability of AI Programming Assistants

Jenny T. Liang Carnegie Mellon University Pittsburgh, PA, USA jtliang@cs.cmu.edu Chenyang Yang Carnegie Mellon University Pittsburgh, PA, USA cyang3@cs.cmu.edu Brad A. Myers Carnegie Mellon University Pittsburgh, PA, USA bam@cs.cmu.edu

ABSTRACT

The software engineering community recently has witnessed widespread deployment of AI programming assistants, such as GitHub Copilot. However, in practice, developers do not accept AI programming assistants' initial suggestions at a high frequency. This leaves



n=410, survey, Github Devs;
30% code generated;
Helps productivity
74% "quick check"
..but...Non-func reqmnts?
Hard to control?

Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models

Priyan Vaithilingam pvaithilingam@g.harvard.edu Harvard University USA

Tianyi Zhang tianyi@purdue.edu Purdue University USA Elena L. Glassman glassman@seas.harvard.edu Harvard University

ABSTRACT

Recent advances in Large Language Models (LLM) have made automatic code generation possible for real-world programming tasks in general-purpose programming languages such as Python. However, there are few human studies on the usability of these tools and how

on two different kinds of approaches: (1) program synthesis algorithms that search over a large program space defined by a domain-specific language (DSL) [2, 7, 10, 12, 14, 19, 24, 25, 30, 31, 34, 43], and (2) deep learning models that are trained on a large amount of existing code and can generate new code given some forms of

n=24; controlled study
+interview; @ Univ.

CoPilot not much help,

Many defects,
hard to Grok code,
..but subjects like it anyway!

Do LLMs help coders In "Vivo"?

BLOG

ML-Enhanced Code Completion Improves Developer Productivity

Posted by Maxim Tabachnyk, Staff Software Engineer and Stoyan Nikolov, Senior Engineering Manager, Google Research

Update - 2022/09/06: This post has been updated to remove a statement about an observed reduction in context switches that could not be confirmed with statistical significance.

n=10k; Telemetry 3% code generated, 6% "Iteration" time reduction >30% suggestion acceptance

Productivity Assessment of Neural Code Completion

Albert Ziegler

wunderalbert@github.com GitHub, Inc. San Francisco, USA

Andrew Rice

acr31@github.com GitHub, Inc. San Francisco, USA

Ganesh Sittampalam hsenag@github.com GitHub, Inc.

San Francisco, USA

Eirini Kalliamvakou

ikaliam@github.com GitHub, Inc. San Francisco, USA

Devon Rifkin

drifkin@github.com GitHub, Inc. San Francisco, USA

Edward Aftandilian

X. Alice Li

xalili@github.com

GitHub, Inc.

San Francisco, USA

Shawn Simister

narphorium@github.com

GitHub, Inc.

San Francisco, USA

eaftan@github.com GitHub, Inc. San Francisco, USA

n=2.6K; Survey + Telemetry 23%-28% suggestion acceptance Acceptance rate correlates with self-reported productivity.

Personal take on Code LLMs

- Developers like them, Use them.
- Not clear they always fully understand the code they're using, and what the "PSP" is for this.
- Prediction: In an astonishingly short time, every computer: laptops, mobile phones, toasters, microwaves, air-traffic control, nuclear power plants, cruise missiles...

Will be running code generated by an LLM!!!

Al-generated code will Be running Everywhere!!

Doi LIVIs generate buggy code?

Large Language Models and Simple, Stupid Bugs

Kevin Jesse

UC Davis

Davis, USA

krjesse@ucdavis.edu

Toufique Ahmed

UC Davis

Davis, USA

tfahmed@ucdavis.edu

Premkumar T. Devanbu

UC Davis

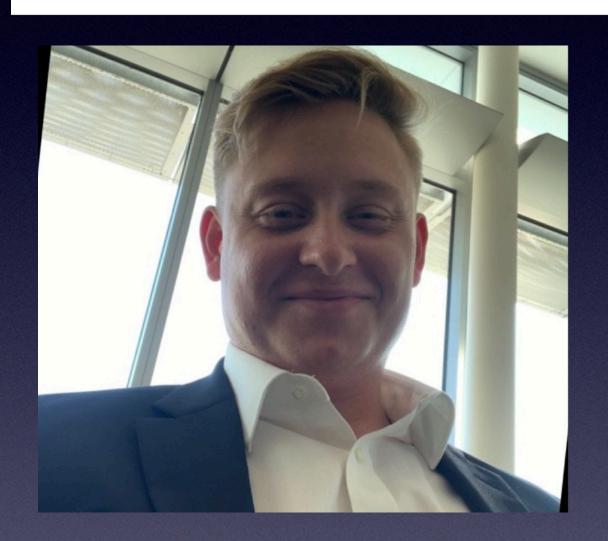
Davis, USA

ptdevanbu@ucdavis.edu

Emily Morgan

UC Davis

Davis, USA
eimorgan@ucdavis.edu

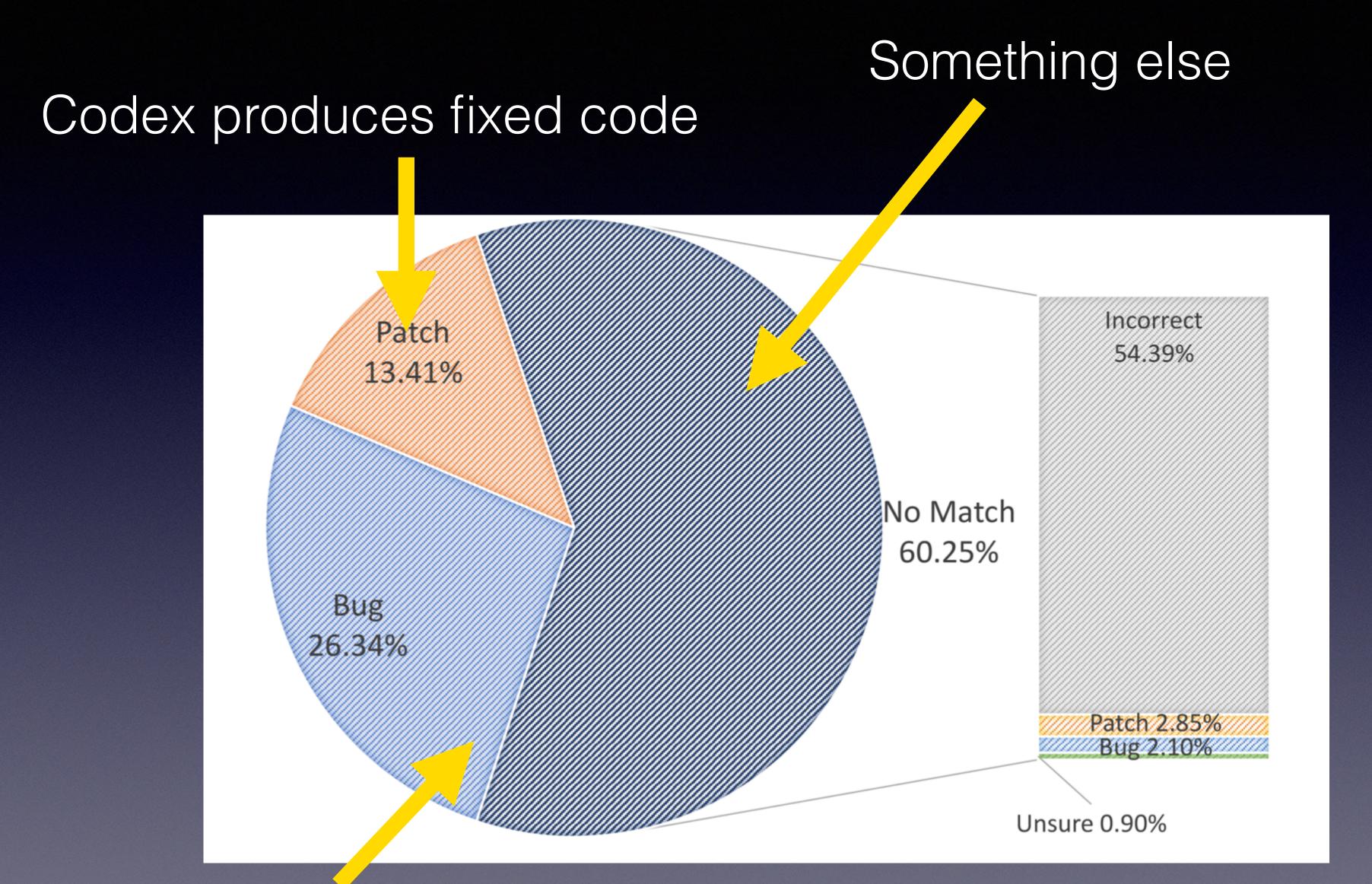


Methodology

- Simple, Stupid, Bugs 4 Java... One line bug fixes from 1000 projects. (SStubs4J, Karampatsis & Sutton 2020)
- Go back in history, and find when they were injected (by human dev)
- Try the with the prefix, and see...

All samples in dataset used were fixed before LLM training data was gathered.

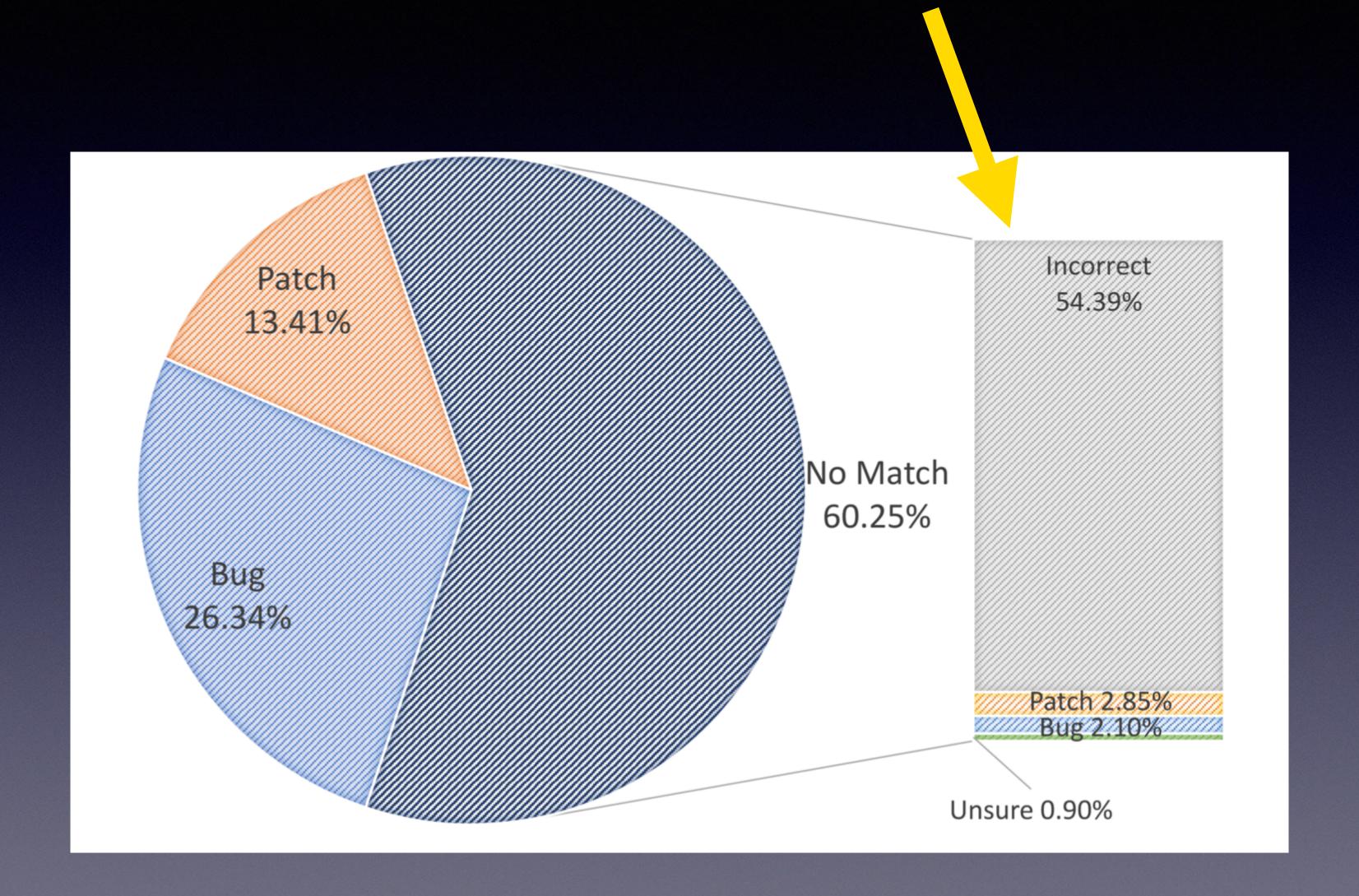
Result



Codex produces buggy code TWICE as often

Result

Manual Review, 401 samples



Also looked at...

• When CoPilot generates Simple, Stupid Bugs, were they "stickier"?

 Good programmers Comment. Do Comments induce CoPilot not repeat human errors?

Take Aways...

- LLMs often recapitulate human errors.
- ...when they do, these errors may be "sticky".
- ...but, we can improve their performance with comments.
- (Worry:) Devs use LLM-generated code without full review.