

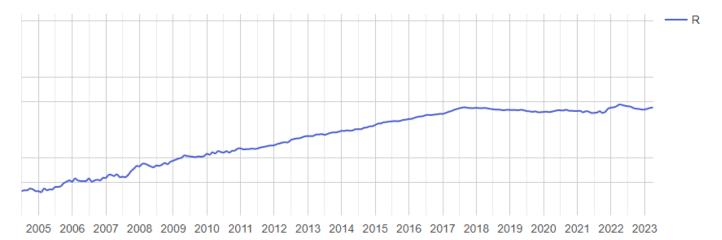
It Will Never Work in Theory April 2023

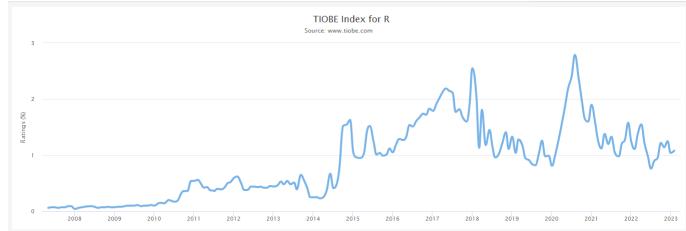
Technical Debt in R Packages

Zadia Codabux University of Saskatchewan, Canada

Øzadiacodabux

https://www.cs.usask.ca/faculty/zadiacodabux/




Top Pr Click a butte	-		ntly wei	-	_	es 2C)22		
Python									100
C									96.8
C++								88.58	
C#								86.99	
Java							70.22		
SQL					47.3	7			
JavaScript				40.48		•			
R		18.92							
HTML		17.97							
TypeScript		L6.99							

IEEE Spectrum's Top Programming Languages 2022

Feb 2023	Feb 2022	Change	Programming	Programming Language		
1	1		🥐 Pyt	thon		
2	2		C c			
3	4	^	C+-	+		
4	3	*	🤹 Jav	/a		
5	5		C #			
6	6		VB Vis	ual Basic		
7	7		JS Jav	vaScript		
8	10	^	sql sq	L		
9	9		ASM ASS	sembly language		
10	8	*	Php PH	Ρ		
11	11		-60 Go			
12	13	^	R R			

PYPL PopularitY of Programming Language

https://www.tiobe.com/tiobe-index/ https://pypl.github.io/PYPL.html https://spectrum.ieee.org/top-programming-languages-2022 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR)

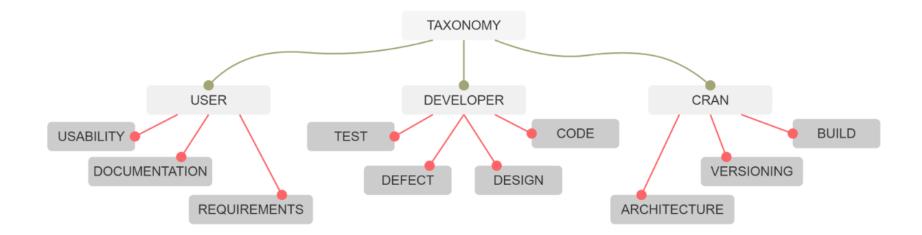
Technical Debt in the Peer-Review Documentation of R Packages: a rOpenSci Case Study

Zadia Codabux University of Saskatchewan zadiacodabux@ieee.org Melina Vidoni RMIT University melina.vidoni@rmit.edu.au Fatemeh H. Fard University of British Columbia fatemeh.fard@ubc.ca

Goal: To investigate Technical Debt (TD) in the documentation of the peer-review process of R packages.

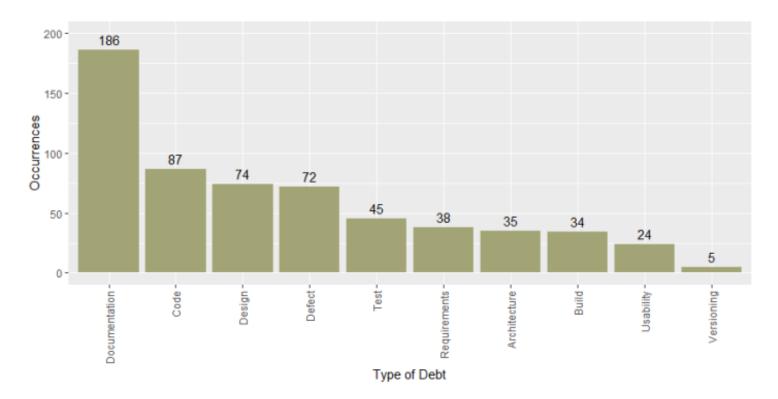
TD Types

TD Types Distribution

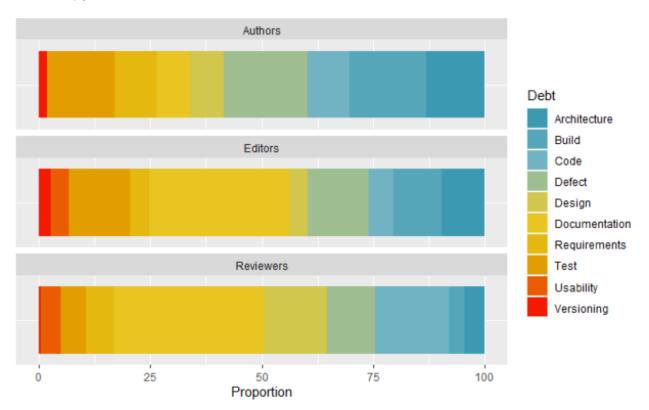


TD Types based on User Roles

Zadia Codabux, Melina Vidoni, Fatemeh H. Fard, Technical Debt in the Peer-Review Documentation of R Packages: a rOpenSci Case Study, Mining Software Repositories Conference, 2021


Results

TD Types


Zadia Codabux, Melina Vidoni, Fatemeh H. Fard, Technical Debt in the Peer-Review Documentation of R Packages: a rOpenSci Case Study, Mining Software Repositories Conference, 2021

TD Types Distribution

8

TD Types based on User Roles

Zadia Codabux, Melina Vidoni, Fatemeh H. Fard, Technical Debt in the Peer-Review Documentation of R Packages: a rOpenSci Case Study, Mining Software Repositories Conference, 2021

Automated Software Engineering (2022) 29:53 https://doi.org/10.1007/s10515-022-00358-6

Self-admitted technical debt in R: detection and causes

Rishab Sharma¹ · Ramin Shahbazi¹ · Fatemeh H. Fard¹ · Zadia Codabux² Melina Vidoni³ Goal: Automatic detection and causes of Self Admitted TD (SATD) in R Packages

Best Performing Model: SATD & SATD Types Detection

Causes of SATD

11

SATD Detection

Approach	SATD (%)						
	P^{avg}	R^{avg}	$F1^{avg}$	Training time			
ME	78.88	74.02	76.36	1 min 52s			
SVM	64.62	70.05	67.22	1 min 20s			
LR	61.04	72.74	66.37	0 min 16s			
CNN	83.92	76.29	79.89	3 min 18s			
ALBERT	87.62	85.03	86.21	52 min 6s			
RoBERTa	85.91	86.27	86.09	48 min 58s			

Results

SATD Types Detection

SATD Type	$F1^{avg}$ (%)								
	ME	SVM	LR	CNN	ALBERT-10	ALBERT-30	RoBERTa		
Testing	83.24	82.42	84.07	84.68	87.42	87.81	86.88		
Code	<u>65.96</u>	54.91	53.15	63.42	67.53	67.99	68.56		
Versioning	44.76	46.43	<u>51.75</u>	48.00	38.23	41.42	61.43		
Architecture	<u>47.50</u>	39.51	41.77	50.04	53.61	57.80	58.14		
Defect	49.28	46.70	49.30	49.76	56.34	58.27	57.66		
Build	48.22	46.39	41.94	46.47	38.69	43.35	52.06		
Documentation	<u>49.76</u>	32.32	39.15	0	21.05	45.97	51.26		
Requirements	37.86	38.17	<u>39.82</u>	35.92	42.40	40.27	46.62		
Design	44.46	34.47	37.74	33.27	30.87	31.69	45.37		
Usability	<u>38.56</u>	35.30	32.56	23.77	36.58	37.63	43.06		
People	<u>34.68</u>	7.34	10.6	0	<u>0</u>	52.82	42.29		
Algorithm	<u>28.48</u>	23.58	25.27	23.09	24.78	24.02	31.30		
Non-SATD	<u>79.18</u>	75.64	76.27	82.18	88.26	88.12	87.76		
Micro-avg	65.64	59.19	58.93	64.21	68.58	69.40	70.94		
Macro-avg	<u>50.15</u>	43.32	44.77	41.58	45.04	52.09	56.34		

Takeaways

- Documentation debt is the most recurrent, yet the least valued
- Not all users give the same importance to the different debt types
- Challenging debt types to detect: Requirement & Algorithm

