MAX PLANCK INSTITUTE
FOR SECURITY AND PRIVACY

® University

On the Surprising Efficiency and
Exponential Cost of Fuzzing

Marcel Bohme

Software Security
MPI-SP & Monash

Keywords: Vulnerability Discovery,
Automated Software Testing,
Effectiveness, Efficiency,
Scalability, Guarantees

MAX PLANCK INSTITUTE

FOR SECURITY AND PRIVACY
OR SECU ¢ N MONASH

® University

On the Surprising Efficiency and
Exponential Cost of Fuzzing

Marcel Bohme

Software Security
MPI-SP & Monash

Keywords: Vulnerability Discovery,
Automated Software Testing,
Effectiveness, Efficiency,
Scalability, Guarantees

We might have strong intuitions about a probtem,
but without a deep unhderstanding of the F?rc;:-bi.@.m

our ntuitions might lead us astray,

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort():
F

Whitebox Fuzzing

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b') 1 - tp
if (s1 == 'a')
if (s2 == 'd')
if (s3 == “1") 1
crash = 1;
if(crash == 1) abort();

}

Path Conditions
vV o1 = (s0 '= 'b")

Whitebox Fuzzing

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (sl == 'a')
if (s2 == 'd’
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort():
F

Path Conditions
vV o1 = (s0 '= 'b")
v 02 = (s0 == "b") /\ (sl != 'a')

Whitebox Fuzzing

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (sl == 'a')
if (s2 == 'd'")
if (s3 == ‘|
crash = 1;

if(crash == 1) abort();

}

Path Conditions
v 901 = (s0 != 'b")
v 92 = (s@0 == 'b"') /\ (s1 != 'a')
vV o3 = (s0 == "'b') /\ (s1 == "a"'") /\ (s2 !'='d")
V os = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd"') /\ (s3 !'= '"I")
X 05 = (s0 == "'b") /\ (s1 == "'a') /\ (s2 == "'d") /\ (s3 == "'!")

Whitebox Fuzzing: Most Effective!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b"')
if (sl == 'a')
if (s2 == 'd'
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort();

}

Path Conditions
v 901 = (s0 != 'b")
v 02 = (s0 == "b") /\ (sl !I="
vV 93 = (s0 == "'b') /\ (s1 =="
V 91 = (s@0 == 'b') /\ (sl =="
X ¢s = (s0 == "'b") /\ (s1 =="

")

') /\ (s2 != 'd")

') /\ (s2 == 'd') /\ (s3 I= '!")
') /\ (s2 == 'd') /\ (s3 == "!")

Q O v QD

Whitebox Fuzzing: Most Effective!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s0 == 'b')
if (s1 == 'a')
if (s2 == 'd")
if (s3 == “I7)
crash = 1;
if(crash == 1) abort(): - It can prove the absence of assertion violation,

}

Path Conditions
v 901 = (s0 != 'b")
v 92 = (s@0 == 'b"') /\ (s1 != 'a')
vV o3 = (s0 == "'b') /\ (s1 == "a"'") /\ (s2 !'='d")
V os = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd"') /\ (s3 !'= '"I")
X 05 = (s0 == "'b") /\ (s1 == "'a") /\ (s2 == "'d"') /\ (s3 == "'!")

Whitebox Fuzzing: Quite Efficient!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort();

}

Path Conditions
v 901 = (s0 != 'b")
v 02 = (s0 == "b") /\ (sl !I="
vV 93 = (s0 == "'b') /\ (s1 =="
V 91 = (s@0 == 'b') /\ (sl =="
X ¢s = (s0 == "'b") /\ (s1 =="

")

') /\ (s2 != 'd")

') /\ (s2 == 'd') /\ (s3 I= '!")
') /\ (s2 == 'd') /\ (s3 == "!")

Q O v QD

Whitebox Fuzzing: Quite Efficient!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b') We only need 3 inputs to find the bug, on average,
lfiés%sg_zza'()j-) U we choose each po&l« at random wikthout r&yta&emam&
if (s3 == *'1")
crash = 1; enumerate

if(crash == 1) abort():
F

Path Conditions
v 901 = (s0 != 'b")
v 92 = (s@0 == 'b"') /\ (s1 != 'a')
vV o3 = (s0 == "'b') /\ (s1 == "a"'") /\ (s2 !'='d")
V os = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd"') /\ (s3 !'= '"I")
X 05 = (s0 == "'b") /\ (s1 == "'a") /\ (s2 == "'d"') /\ (s3 == "'!")

Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

1f (S@ == 'b')
if (sl == "'a') For each parameter, choose 1 of 256 values
lfiés%s?::d')u) uv\iﬂformtj ab random,
crash = 1:

if(crash == 1) abort():
F

Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b'")
if (s(== 'a')) For each parameter, choose 1 of 256 values
1f (s2 == 'd° _ '
if (53 == “17) um%ormtv ak randowm,
crash = 1;
if(crash == 1) abort(); €It can never prove the absence of assertion violation!

}

August 1969
NOTES ON STRUCTURED PROCGRAMMING by prof.dr.bEdsger W.Dijkstra

Un the reliability of mechanisms.

Corollary of the first part of this section:
Program testing can be used to show the presence of bugs, but never to show
their absence!

https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd"')
if (s3 == ‘1")
crash = 1;

For each parameter, choose 1 of 256 values
umi{ormtv at random.

if(crash == 1) abort(); €It can never prove the absence of assertion violation!

! Well, that’s not e.m%ireij true. We can estimate a “residual risike”,
August 1969

NOTES ON STRUCTURED PROGRAMMING by prof.dr.Edsger W.Dijkstra

Un the reliability of mechanisms.

r“_‘ - 3 - e ,_\;-‘ boo . ~ i e e = - - ' - . 4 -)
E_.L,IU-.A-_}I",' L T.'nif Tl.f:-. 03art oT 't 'lSsS SecLliggn:

Frogram testing can be used to show the presence bugs, but never to show

thelir absence!

[ESEC/FSE’21] Estimating Residual Risk in Greybox Fuzzing, M Béhme, D Liyanage, V Wustholz
[TOSEM’18] STADS: Software Testing as Species Discovery, M Bohme; ACM Trans. Softw. Eng. Meth.

Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b"')
if (s% == 'a')) For each parameter, choose 1 of 256 values
1f (s2 == 'd’ . n
if (53 == “17) us»\:,{ormtj ak randowm,
crash = 1;
if(crash == 1) abort();

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b"')
if (s% == 'a')) For each parameter, choose 1 of 256 values
1f (s2 == 'd’ . n
if (53 == “17) uvwfc:vrmtj ak randowm,
crash = 1;
if(crash == 1) abort();

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

So, whitebox fuzzing is better, right?

Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b"')
if (s% == 'a')) For each parameter, choose 1 of 256 values
1f (s2 == 'd’ . n
if (53 == “17) uvwfc:vrmtj ak randowm,
crash = 1;
if(crash == 1) abort();

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

So, whitebox fuzzing is better, right? Wrong.

1402

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

Partition Testing Does Not Inspire Confidence

Dick Hamlet, Member, IEEE, and Ross Taylor

This study was undertaken because partition testing did not
live up to its intuitive value in two earlier studies. In their brief
for random testing [3], Duran and Ntafos published a precise
comparison between it and partition testing. Their surprising
result is that the two methods are of almost equal value, under as-
sumptions that seem to favor partition testing. Random testing has
a decidedly spotty reputation, probably because it makes almost
no use of special information about the program being tested. It 1s
certainly counterintuitive that the best systematic method 1is little

improvement over the worst. Hamlet [5] corroborates this result §
‘using a different sampling model. He shows random testing to be }
‘superior to partition testing, its superiority increasing with more |
partitions and with the program confidence required. *_

1402 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

“Whitebox Fuzzing”
Partitien—Testmg Does Not Inspire Confidence

Dick Hamlet, Member, IEEE, and Ross Taylor

This study was undertaken because partition testing did not
live up to its intuitive value in two earlier studies. In their brief
for random testing [3], Duran and Ntafos published a precise
comparison between it and partition testing. Their surprising
result is that the two methods are of almost equal value, under as-
sumptions that seem to favor partition testing. Random testing has
a decidedly spotty reputation, probably because it makes almost
no use of special information about the program being tested. It 1s
certainly counterintuitive that the best systematic method 1is little

improvement over the worst. Hamlet [5] corroborates this result §
‘using a different sampling model. He shows random testing to be |
‘superior to partition testing, its superiority increasing with more |
partitions and with the program confidence required. '

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b") 1f our whitebox fuzzer takes koo long
if (s1 == 'a') . :
if (s2 == 'd") per inpul, our blackbox fuzzer QMEF?@.T{:OTMS.
if (s3 == *'1")
crash = 1; » There is a maximum time per test &MPM&!

if(crash == 1) abort():
F

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b') 1f our whitebox fuzzer takes koo long
if (s1 == 'a') . :
if (s2 == 'd") per inpul, our blackbox fuzzer QMEF.?@.T{:QT‘MS.
if (s3 == ‘1)
crash = 1: » There s a maximum bime per tesk imyu&!
if(crash == 1) abort();

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.
On my machine, this takes 6.3 seconds.
On 100 machines, it takes 63 milliseconds.

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if](c s? - 'b') ’ So, f we have swfﬂf&ci@imﬂfj many machines
if (s2 == rd) (ko maximize execs/sec), blackbox fuzzers
if (s3 == ‘1") . _
crash = 1: are the best we can qek, right?
if(crash == 1) abort();

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

* Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

On my machine, this takes 6.3 seconds.
On 100 machines, it takes 63 milliseconds.

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if](c s? - 'b') ’ So, f we have swfﬂf&ci@imﬂfj many machines
if (s2 == rd) (ko maximize execs/sec), blackbox fuzzers
if (s3 == ‘1") . _
crash = 1: are the best we can qek, right? N
TOWnC,
if(crash == 1) abort(); 3

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

* Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

On my machine, this takes 6.3 seconds.
On 100 machines, it takes 63 milliseconds.

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if](c s? T 'b") . So, Exf we have suﬁacmmﬂy many machines
if (s2 == rd) (ko maximize execs/sec), blackbox fuzzers
if (s3 == “1") . \
crash = 1: are the best we can qek, right? N
TOWNnG,
if(crash == 1) abort(); 3

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
 Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

Instead of qenerating inputs from scrakch,
cal we reuse existing &Mpuﬁs?

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if](c s? - 'b') ’ So, f we have suﬁacmmﬂy many machines
if (s2 == rd) (ko maximize execs/sec), blackbox fuzzers
if (s3 == ‘1") . \
crash = 1: are the best we can qek, right? N
TOWnC,
if(crash == 1) abort(); 3

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
 Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.
 Mutational Blackbox Fuzzer mutates a random character in a seed.

Instead of qenerating inputs from scrakch,
cal we reuse existing &Mpuﬁs?

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if](c s? - 'b') ’ So, f we have swfﬂf&ci@imﬂfj many machines

if (s2 == rd) (ko maximize execs/sec), blackbox fuzzers
if (s3 == “1") . _
crash = 1: are the best we can qek, right?

Wroing.

if(crash == 1) abort();
}
* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
 Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

e Mutational Blackbox Fuzzer mutates a random character in a seed.
e Started with the seed bad?

* Discovers the bug after ((4-1)*(2-8))-1 = 1024 inputs, in expectation.

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort():
s
* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

e Mutational Blackbox Fuzzer mutates a random character in a seed.
e Started with the seed bad?

* Discovers the bug after ((4-1)*(2-8))-1 = 1024 inputs, in expectation.

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort():
s
* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

e Mutational Blackbox Fuzzer mutates a random character in a seed.
e Started with the seed bad?

* Discovers the bug after ((4-1)*(2-8))-1 = 1024 inputs, in expectation.

t

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort():
s
* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

e Mutational Blackbox Fuzzer mutates a random character in a seed.
e Started with the seed bad?

* Discovers the bug after ((4-1)*(2-8))-1 = 1024 inputs, in expectation.

t

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort():
s
* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

e Mutational Blackbox Fuzzer mutates a random character in a seed.
e Started with the seed bad?

* Discovers the bug after ((4-1)*(2-8))-1 = 1024 inputs, in expectation.

t

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

Alright, we cheated. We chose a qood
seed to start with,

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort():
s
* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

e Mutational Blackbox Fuzzer mutates a random character in a seed.
e Started with the seed bad?

* Discovers the bug after ((4-1)*(2-8))-1 = 1024 inputs, in expectation.

t

Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

Alright, we cheated. We chose a qood
seed bto start with,

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
What f we could automatically
if(crash == 1) abort():; dESCC}V@.r Ehis S?;@;d?

}
* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

* Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

e Mutational Blackbox Fuzzer mutates a random character in a seed.
e Started with the seed bad?

* Discovers the bug after ((4-1)*(2-8))-1 = 1024 inputs, in expectation.

t

Greybox Fuzzing: “Enumerate”

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort();
}
 Greybox Fuzzing: Add generated inputs

to the corpus which increase coverage!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

Greybox Fuzzing: “Enumerate”

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b") “Interesting”
if (s1 == "a') Input
if (s2 == 'd"') Seed corpus *
if (s3 == *17) B kkx prxx
crash = 1;
if(crash == 1) abort():
}

 Greybox Fuzzing: Add generated inputs
to the corpus which increase coverage!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

Expect_ed #inputs

(1x4-1 2-8)-1
= 1024

Greybox Fuzzing: “Enumerate”

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b"')
if (s1 == 'a')
if (s2 == 'd"')
if (s3 == “1") kkkk phkk
crash = 1;
* %k %k %k
if(crash == 1) abort(); b*** bax*

}
 Greybox Fuzzing: Add generated inputs

to the corpus which increase coverage!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

(1x4-1x2-8)
= 1024
(1/2 x4-1x2-8)1
= 2048

void crashme (char s@, char sl1, char s2, char s3) {

int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort();
}
 Greybox Fuzzing: Add generated inputs

to the corpus which increase coverage!

o Greybox Fuzzing started only with **** in

the seed corpus discovers the bug after
10K inputs (in 150 microseconds)!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

* % %k %k

* %k K %
b* **

* %k % %
b* **

ba* *
% %k % %

b* % *

ba**
bad*

Greybox Fuzzing: “Enumerate”

b***

ba**

bad*

bad!

(1x4-1x2-8)
= 1024
(1/2 x4-1x2-8)1
= 2048

(1/3 x4-1x2-8)
= 3072

(1/4 x4-1x2-8)
= 4096

Total: 10240

Greybox Fuzzing: “Enumerate”

 Greybox Fuzzing: Add generated inputs
to the corpus which increase coverage!

o Greybox Fuzzing started only with **** |n

the seed corpus discovers the bug after
10k inputs (in 150 microseconds)!

 Boosted Greybox Fuzzing started with ****

IN the seed corpus discovers the bug after
4K inputs (in 55 microseconds)!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

* % %k %k

* %k K %
b* **

* %k % %
b* **

ba**
* % %k %k

b* **

ba**
bad*

b***

ba**

bad*

bad!

(1x4-1x2-8)
= 1024

(1 x4-1x2-8)-1
= 1024

(1 x4-1x2-8)-1
= 1024

(1 x4-1x2-8)
= 1024

Total: 4096

More Machines!

Awesome! We have a really efficient fuzzers.
Lebs Ehrow mwore machines ab Ehe Frobtém!

* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

On my machine, this takes 6.3 seconds.
-8 On 100 machines, it takes 63 milliseconds.

More Machines!

X Eivvies wmore machines meains
X times more buqgs, right?

* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

On my machine, this takes 6.3 seconds.
On 100 machines, it takes 63 milliseconds.

More Machines!

X Eivvies wmore machines meains
X times more buqgs, right?

Wrohg,

* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

On my machine, this takes 6.3 seconds.
On 100 machines, it takes 63 milliseconds.

- Exponential Cost 0 Linear cost

< £ o hours [———

5 | [R"2=97.26% | S ©hours

= &

O

O ®

S g 1 hour

7)))

L= o, |

g § 15 min A

g ?f) 5 min A

O o

5 o

< 01 E 1 min-

T T T T T T - — T) T T T | T T

1 2 4 8 16 32 - 1 2 4 8 16 32 64 128

#machines #machines

Figure 1: Each vuln. discovery requires exponentially more
machines (left). Yet, exponentially more machines allow to
find the same vulnerabilities exponentially faster (right).

Fuzzer Test Suite (45min campaigns)

23

#more species discovered

1.00

Explaining Exponential Cost

l Total #Species: 1 Total #Species: 10

——--———_

210
#machines #machines

Figure 10. Number of additional species discovered in a fixed time budget
as the number of machines increases (5 random samples of {qi}f:1 each.

#more species discovered

Explaining Exponential Cost

——--———_

Total #Species: 1 Total #Species: 100__
1.00 - | Total#Species: 100 |

210
#machines #machines

Figure 10. Number of additional species discovered in a fixed time budget
as the number of machines increases (5 random samples of {qi}f=1 each.

#more species discovered

1.00

Explaining Exponential Cost

fotal #opecies: 1 Total #Species:

20 25 21 0 21 5 220 20 25 21 0 21 5 220
#machines #machines

Figure 10. Number of additional species discovered in a fixed time budget
as the number of machines increases (5 random samples of {qi}f=1 each.

#more species discovered

Explaining Exponential Cost

Total #Species: 1 Total #Species: 1000
20 25 210 215 220 20 25 210 215 220
#machines #machines

Figure 10. Number of additional species discovered in a fixed time budget
as the number of machines increases (5 random samples of {qi}f=1 each.

#more species discovered

1.00

Explaining to Exponential Cost

Total #Species: 1000

20 25 210 215 220 20 25 210 215
#machines #machines

Figure 10. Number of additional species discovered in a fixed time budget
as the number of machines increases (5 random samples of {qi}f=1 each.

Explaining to Exponential Cost

—§ Intuitively, each new vuLMQrabELE%v requires
some more resources (time or machines)
thaw the previous vuivx@.ro\bf,u%j«

On the Cost of Vulnerability Discovery

A constant rate of vulnerabilit ciisaoverj
requires exponential amount 02 resources,

*This iIs a fundamental limitation of fuzzing!

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.
M. B6hme, Brandon Falk (Microsoft)
Nominated for ACM Distinguished Paper Award

26

Whitebox Fuzzing: Most Effective! Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) { void crashme (char s@, char sl1, char s2, char s3) {

int crash = 0; int crash = 0;
if (s@ == 'b') if (s@ == 'b") 1f our whitebox fuzzer takes too long

if (s1 == 'a') if (s1 == 'a') : :

if (s2 == 'd") if (52 == 'd"') per input, our blackbox fuzzer outperforms!
if (s3 == ‘1") if (s3 == 1‘1") |
crash = 1; crash = 1; » There is a maximum btime per best im[m&!

if(crash == 4§ abort(); 4— It can prove the absence of assertion violation, f(crash == 1) abort():

¥ 2 Iy

Path Conditions * Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

v 01 = (s0 !'= 'b") * Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 = 4 billion inputs, in expectation.
J 92 = (s@ == "'b"') /\ (sl != 'a') On my machine, this takes 6.3 seconds.

Voes = (s@ == "b") /\ (sl =="a') /\ (s2 I="d") On 100 machines, it takes 63 milliseconds.

V ga = (s@ == 'b") /\ (sl =="'a') /\ (s2 == 'd') /\ (s3 !='1")

X 95 = (s0 == 'b") /\ (s1 == "'a') /\ (s2 == 'd') /\ (s3 == "1")

Greybox Fuzzing: “Enumerate” Exponential Cost of Vulnerability Discovery

5 Total #Species: 1 Total #Species: 1000
o)
* Greybox Fuzzing: Add generated inputs © 600 -
to the corpus which increase coverage! S
(92)
xxkx prrx (1x4Tx28) O 400 -
— N
o Greybox Fuzzing started only with **** in x = 110248 1 .g
the seed corpus discovers the bug after pxx Da** (X=4 ’ 6(224) Q 200 -
10k inputs (in 150 microseconds)! . k% 7
(1 x 4-1 x2—8)—1 ()]
b*** bad¥* =
Dok = 1024 2 0-
 Boosted Greybox Fuzzing started with ***x e ++ * : - r -
in the seed corpus discovers the bug after brxx 44y (1 x47x28)7 #machines 2 2 #macﬁines 2 2
4k inputs (in 55 microseconds)! ba** = 1024
bad*
: Total: 4096 Figure 10. Number of additional species discovered in a fixed time budget
[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain as the number of machines increases (5 random samples of {qi}f=1 each.

M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

Whitebox Fuzzing: Most Effective!

void crashme (char s@, char sl1, char s2, char s3) {

int crash = 0;

int crash = 0;

Blackbox Fuzzing: Super fast!

void crashme (char s@, char s1, char s2, char s3) {

if (s@ == 'b") if (s@ == 'b") 1f our whitebox fuzzer takes too long
if (s1 == 'a') if (s1 == 'a') i ' ;
if (s2 == 'd") if (52 == 'd') per input, our blackbox fuzzer outperforms!
if (s3 == ‘!') if (s3 == ‘1) |
crash = 1; crash = 1; » There is a maximum time per test im[m&!
if(crash == 4§ abort(); 4— It can prove the absence of assertion violation, f(crash == 1) abort():
¥ 2 Iy
Path Conditions * Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
Vo1 = (s0 !'= 'b") S et e e e s e e B =3 ((1/256)4) 1 = 4 billion inputs, in expectation.
J 92 = (s@ == "'b"') /\ (sl != 'a')] akes 6.3 seconds.
Ve =s0== 00 A si==an A2 =d0 0 If you want to take a deeper dive: tkes 63 milliseconds.
Y @2 = (s@ == 'b"') /\ (s1 =="'a') /\ (s2 == 'd') ,
X 05 = (s0 == 'b') /\ (s1=="a") /\ (s2 == 'd") * Read our interactive text book: The Fuzzing Book

Greybox Fuzzing: “Ent

* Greybox Fuzzing: Add generated inputs
to the corpus which increase coverage!

o Greybox Fuzzing started only with **** in

the seed corpus discovers the bug after
10k inputs (in 150 microseconds)!

« Boosted Greybox Fuzzing started with ****

in the seed corpus discovers the bug after
4K inputs (in 55 microseconds)!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

* Read our IEEE Software article: “Fuzzing: Challenges and Reflections”

* Apply for PhD / PostDoc in my group at MPI-SP, Bochum, Germany.

Web: https://mboehme.github.com Twitter: @mboehme_

fulnerability Discovery

Total #Species: 1000
600 -
S
@ 0.75 A
*kkk Dphkkx (1x4-1x2:8) o 400 -
= 1024 _g 0.50 -
* % k% (1 x 4-1 ><2'8)'1 O
prxx DAF¥ — 1024 o 200 -
. »n 0.25 A
b*** bad¥* (1 %471 276y D
. =1024 o
ba =|:E|: 0.00 - 0 - i
* % % %
b* % % (1 x4-1x2-8)-1 , 2" 2° 2,10 2" 2%
T | R _ 1024 #machines #machines
bad*
2 Total: 4096 Figure 10. Number of additional species discovered in a fixed time budget

as the number of machines increases (5 random samples of {qi}f=1 each.

https://mboehme.github.com

