
On the Surprising Efficiency and  
Exponential Cost of Fuzzing

Marcel Böhme

Software Security

MPI-SP & Monash

Keywords: Vulnerability Discovery,
Automated Software Testing,

Effectiveness, Efficiency,  
Scalability, Guarantees

On the Surprising Efficiency and  
Exponential Cost of Fuzzing

Marcel Böhme

Software Security

MPI-SP & Monash

Keywords: Vulnerability Discovery,
Automated Software Testing,

Effectiveness, Efficiency,  
Scalability, Guarantees

We might have strong intuitions about a problem,
but without a deep understanding of the problem

our intuitions might lead us astray.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Whitebox Fuzzing

φ1 = (s0 != 'b')
Path Conditions

✓

s1 != 'b'

φ1

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Whitebox Fuzzing

φ1 = (s0 != 'b')
Path Conditions

✓

s1 != 'b' s1 == 'b'

s2 != 'a'
φ1

φ2

φ2 = (s0 == 'b') /\ (s1 != 'a')✓

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Whitebox Fuzzing

φ1 = (s0 != 'b')
Path Conditions

✓

s1 != 'b' s1 == 'b'

s2 == 'a's2 != 'a'

s3 != 'd' s3 == 'd'

s4 != '!' s4 != '!'

φ1

φ2

φ3

φ4 φ5
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Most Effective!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

It can prove the absence of assertion violation,
by enumerating all paths and modulo some assumptions.

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Most Effective!

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Quite Efficient!
void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Quite Efficient!
void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

We only need 3 inputs to find the bug, on average,
if we choose each path at random without replacement.

Choose a random path from the multivariate hypergeometric (i.e., enumerate).
Choose some input that exercises that path (by constraint solving).

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

It can never prove the absence of assertion violation!

https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

It can never prove the absence of assertion violation!
Well, that’s not entirely true. We can estimate a “residual risk”.

[ESEC/FSE’21] Estimating Residual Risk in Greybox Fuzzing, M Böhme, D Liyanage, V Wüstholz

[TOSEM’18] STADS: Software Testing as Species Discovery, M Böhme; ACM Trans. Softw. Eng. Meth.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

So, whitebox fuzzing is better, right?

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

So, whitebox fuzzing is better, right? Wrong. At least not always.

“Whitebox Fuzzing”

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

If our whitebox fuzzer takes too long
per input, our blackbox fuzzer outperforms!

» There is a maximum time per test input!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

If our whitebox fuzzer takes too long
per input, our blackbox fuzzer outperforms!

» There is a maximum time per test input!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

Blackbox Fuzzing: Super fast!

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.
Generational

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Instead of generating inputs from scratch,
can we reuse existing inputs?

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.
Generational
• Mutational Blackbox Fuzzer mutates a random character in a seed.

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Instead of generating inputs from scratch,
can we reuse existing inputs?

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.
Generational
• Mutational Blackbox Fuzzer mutates a random character in a seed.

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

• Mutational Blackbox Fuzzer mutates a random character in a seed.

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

• Mutational Blackbox Fuzzer mutates a random character in a seed.

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

• Mutational Blackbox Fuzzer mutates a random character in a seed.

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

• Mutational Blackbox Fuzzer mutates a random character in a seed.

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

• Mutational Blackbox Fuzzer mutates a random character in a seed.

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Alright, we cheated. We chose a good
seed to start with.

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

• Mutational Blackbox Fuzzer mutates a random character in a seed.

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Alright, we cheated. We chose a good
seed to start with.

What if we could automatically
discover this seed?

Greybox Fuzzing: “Enumerate”

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1/2 ✕ 4-1 ✕ 2-8)-1 

= 2048

b***
ba**

bad* (1/3 ✕ 4-1 ✕ 2-8)-1 
= 3072

b***
ba**
bad*

bad! (1/4 ✕ 4-1 ✕ 2-8)-1 
= 4096

Total: 10240

Seed corpus

Expected #inputs“Interesting” 
Input

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

Greybox Fuzzing: “Enumerate”
void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1/2 ✕ 4-1 ✕ 2-8)-1 

= 2048

b***
ba**

bad* (1/3 ✕ 4-1 ✕ 2-8)-1 
= 3072

b***
ba**
bad*

bad! (1/4 ✕ 4-1 ✕ 2-8)-1 
= 4096

Total: 10240
[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

Greybox Fuzzing: “Enumerate”
void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

• Greybox Fuzzing started only with **** in  
the seed corpus discovers the bug after 
10k inputs (in 150 microseconds)!

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1/2 ✕ 4-1 ✕ 2-8)-1 

= 2048

b***
ba**

bad* (1/3 ✕ 4-1 ✕ 2-8)-1 
= 3072

b***
ba**
bad*

bad! (1/4 ✕ 4-1 ✕ 2-8)-1 
= 4096

Total: 10240

Greybox Fuzzing: “Enumerate”
void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

• Greybox Fuzzing started only with **** in  
the seed corpus discovers the bug after 
10k inputs (in 150 microseconds)!

• Boosted Greybox Fuzzing started with ****  
in the seed corpus discovers the bug after 
4k inputs (in 55 microseconds)!

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1 ✕ 4-1 ✕ 2-8)-1 

= 1024

b***
ba**

bad* (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

b***
ba**
bad*

bad! (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

Total: 4096

Greybox Fuzzing: “Enumerate”

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

More Machines!

Awesome! We have a really efficient fuzzers.
Let’s throw more machines at the problem!

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

More Machines!

X times more machines means
X times more bugs, right?

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

More Machines!

X times more machines means
X times more bugs, right?

Wrong.

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

•

Fuzzer Test Suite (45min campaigns)
23

Explaining Exponential Cost 

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Explaining Exponential Cost 

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Explaining Exponential Cost 

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Explaining Exponential Cost 

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Explaining to Exponential Cost 

Intuitively, each new vulnerability requires
some more resources (time or machines)

than the previous vulnerability.

Explaining to Exponential Cost 

On the Cost of Vulnerability Discovery

A constant rate of vulnerability discovery
requires exponential amount of resources.

*This is a fundamental limitation of fuzzing!

26
[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery. 
M. Böhme, Brandon Falk (Microsoft)

Nominated for ACM Distinguished Paper Award

Wrap up slide

26

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

It can prove the absence of assertion violation,
by enumerating all paths and modulo some assumptions.

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Most Effective!

2
• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

If our whitebox fuzzer takes too long
per input, our blackbox fuzzer outperforms!

» There is a maximum time per test input!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

Blackbox Fuzzing: Super fast!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

• Greybox Fuzzing started only with **** in  
the seed corpus discovers the bug after 
10k inputs (in 150 microseconds)!

• Boosted Greybox Fuzzing started with ****  
in the seed corpus discovers the bug after 
4k inputs (in 55 microseconds)!

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1 ✕ 4-1 ✕ 2-8)-1 

= 1024

b***
ba**

bad* (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

b***
ba**
bad*

bad! (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

Total: 4096

Greybox Fuzzing: “Enumerate”

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Exponential Cost of Vulnerability Discovery 

Wrap up slide

26

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

It can prove the absence of assertion violation,
by enumerating all paths and modulo some assumptions.

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Most Effective!

2
• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

If our whitebox fuzzer takes too long
per input, our blackbox fuzzer outperforms!

» There is a maximum time per test input!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

Blackbox Fuzzing: Super fast!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

• Greybox Fuzzing started only with **** in  
the seed corpus discovers the bug after 
10k inputs (in 150 microseconds)!

• Boosted Greybox Fuzzing started with ****  
in the seed corpus discovers the bug after 
4k inputs (in 55 microseconds)!

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1 ✕ 4-1 ✕ 2-8)-1 

= 1024

b***
ba**

bad* (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

b***
ba**
bad*

bad! (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

Total: 4096

Greybox Fuzzing: “Enumerate”

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Exponential Cost of Vulnerability Discovery 

If you want to take a deeper dive:
* Read our interactive text book: The Fuzzing Book

* Read our IEEE Software article: “Fuzzing: Challenges and Reflections”

* Apply for PhD / PostDoc in my group at MPI-SP, Bochum, Germany.

Web: https://mboehme.github.com Twitter: @mboehme_

https://mboehme.github.com

