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We might have strong intuitions about a problem, 
but without a deep understanding of the problem 

our intuitions might lead us astray. 
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          crash = 1; 

  if(crash == 1) abort(); 
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We only need 3 inputs to find the bug, on average, 
if we choose each path at random without replacement. 

Choose a random path from the multivariate hypergeometric (i.e., enumerate). 
Choose some input that exercises that path (by constraint solving).
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Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values 
uniformly at random.

It can never prove the absence of assertion violation!
Well, that’s not entirely true. We can estimate a “residual risk”.

[ESEC/FSE’21] Estimating Residual Risk in Greybox Fuzzing, M Böhme, D Liyanage, V Wüstholz

[TOSEM’18] STADS: Software Testing as Species Discovery, M Böhme; ACM Trans. Softw. Eng. Meth.
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“Whitebox Fuzzing”



• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

If our whitebox fuzzer takes too long  
per input, our blackbox fuzzer outperforms! 

» There is a maximum time per test input!
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Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

•  Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation. 


So, if we have sufficiently many machines  
(to maximize execs/sec), blackbox fuzzers 
are the best we can get, right?
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Alright, we cheated. We chose a good 
seed to start with.

What if we could automatically 
discover this seed?



Greybox Fuzzing: “Enumerate”

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!
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• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

More Machines!

Awesome! We have a really efficient fuzzers. 
Let’s throw more machines at the problem!

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds. 



• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

More Machines!

X times more machines means  
X times more bugs, right?

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds. 



• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

More Machines!

X times more machines means  
X times more bugs, right?

Wrong.

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds. 



•

Fuzzer Test Suite (45min campaigns)
23



Explaining Exponential Cost 

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of             each.
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Explaining to Exponential Cost 



Intuitively, each new vulnerability requires  
some more resources (time or machines) 

than the previous vulnerability.

Explaining to Exponential Cost 



On the Cost of Vulnerability Discovery

A constant rate of vulnerability discovery  
requires exponential amount of resources.

*This is a fundamental limitation of fuzzing!
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void crashme (char s0, char s1, char s2, char s3) { 
  int crash = 0; 
   
  if (s0 == 'b') 
    if (s1 == 'a') 
      if (s2 == 'd') 
        if (s3 == ‘!’) 
          crash = 1; 

  if(crash == 1) abort(); 
} 

It can prove the absence of assertion violation, 
by enumerating all paths and modulo some assumptions.

φ1  = (s0 != 'b')
Path Conditions

✓
φ2  = (s0 == 'b') /\ (s1 != 'a') 
φ3  = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd') 
φ4  = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!') 
φ5  = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Most Effective!

2
• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

If our whitebox fuzzer takes too long  
per input, our blackbox fuzzer outperforms! 

» There is a maximum time per test input!

void crashme (char s0, char s1, char s2, char s3) { 
  int crash = 0; 
   
  if (s0 == 'b') 
    if (s1 == 'a') 
      if (s2 == 'd') 
        if (s3 == ‘!’) 
          crash = 1; 

  if(crash == 1) abort(); 
} 

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds. 

Blackbox Fuzzing: Super fast!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

• Greybox Fuzzing started only with **** in  
the seed corpus discovers the bug after 
10k inputs (in 150 microseconds)!

• Boosted Greybox Fuzzing started with ****  
in the seed corpus discovers the bug after 
4k inputs (in 55 microseconds)!

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

**** 
b*** ba** (1 ✕ 4-1 ✕ 2-8)-1 

= 1024
**** 
b*** 
ba**

bad* (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

**** 
b*** 
ba** 
bad*

bad! (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

Total: 4096

Greybox Fuzzing: “Enumerate”

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of             each.

Exponential Cost of Vulnerability Discovery 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Exponential Cost of Vulnerability Discovery 

If you want to take a deeper dive: 
* Read our interactive text book: The Fuzzing Book

* Read our IEEE Software article: “Fuzzing: Challenges and Reflections”

* Apply for PhD / PostDoc in my group at MPI-SP, Bochum, Germany.


Web: https://mboehme.github.com  Twitter: @mboehme_

https://mboehme.github.com

